SECTION 109 - STORM SEWERS

109.1 GENERAL REQUIREMENTS
109.1.1 Horizontal Alignment
109.1.2 Bends and Junctions
109.1.3 Vertical Alignment
109.1.4 Clearance from Other Utilities
109.1.5 Allowable Sizes
109.1.6 Plan Requirements
109.2 CONSTRUCTION MATERIALS
109.2.1 Types of Pipe Allowed
109.2.2 Junction Structures
109.3 HYDRAULIC DESIGN
109.3.1 Design Storm 109.3.2 Storm Sewer Capacity
109.4 OUTLET REQUIREMENTS
109.5 REFERENCES

Figure 109.1 Typical Pipe Connections at Junction Structure
Figure 109.2 Standard Junction Box
Figure 109.3 Full Flow Data for Circular Pipe
Figure 109.4 Full Flow Data for Elliptical Concrete Pipe and Concrete Pipe-Arch
Figure 109.5 Data for Corrugated Metal Pipe-Arch
Figure 109.6 Minor Losses at Structures
Table 109.1 Minimum Easement Widths

SECTION 109 - STORM SEWERS

This section covers the design of closed piping for conveyance of storm drainage. Design of bridges, culverts, open channels and other conveyances is covered in other sections.

109.1 GENERAL REQUIREMENTS

109.1.1 Horizontal Alignment

Except for crossings, storm sewers shall not be located under streets. Storm sewers paralleling curbed streets shall be located such that the outside edge of the pipe is six inches ($6^{\prime \prime}$) minimum behind the back edge of the curb. Pipes shall be aligned in straight lines. Curved alignments are not allowed.

Storm sewers located on private property shall be located within drainage easements and shall be aligned parallel with property lines unless otherwise approved. Where storm drains exit the street right-of-way between residential lots, the pipe shall be extended a minimum of forty feet (40')
past the front yard setback line, or to the estimated location of the rear of the dwellings, whichever is more. The outside edge of the pipe shall be located a minimum of five feet (5') from the easement
line. Minimum easement widths are given in Table 109.1.

TABLE 109.1 MINIMUM EASEMENT WIDTHS

INSIDE HORIZONTAL DIMENSION

MINIMUM EASEMENT WIDTH

15"- 48"
54"- 72"
84" \& 96"
OVER 96"

15 FEET
17.5 FEET
20 FEET
APPROVAL REQUIRED

109.1.2 Bends and Junctions

A manhole or junction structure must be provided at each change in direction or grade of the piping, EXCEPT that bends may be located at junction structures in order to provide a perpendicular connection. Bends must be provided at junction structures if the angle of entry is less than sixty (60) degrees (see Figure 109.1). Pipes shall be aligned such that the direction of flow of any incoming pipe is not less than perpendicular to the direction of flow of the outflow pipe (i.e. flow "against the grain" shall be avoided).

Access manholes for junction structures shall not be located within the pavement area for public streets. Junction structures shall be located such that the outside edge of the access manhole is twelve inches (12") minimum behind the curb or from the edge of a retaining wall or other obstruction.

Access manholes shall be provided at a maximum of three hundred feet (300') spacing along the pipe.

Precast circular manholes, square cast-in-place or precast junction boxes, or inlets may be used for junction structures.

109.1.3 Vertical Alignment

The recommended minimum slope for storm drain piping is 0.5% (five-tenths percent). Pipe grades may not be less than the minimum friction slope required to convey the design flow, unless specifically approved. Maximum recommended grade is 10% (ten percent). Properly designed anchorage may be required for grades above 10% (ten percent) and will be required for grades above 20% (twenty percent).

When changing pipe diameters, the inside tops of the pipes shall be set at the same elevation. Pipe size shall never be reduced downstream even though pipe slope and theoretical capacity
may increase. A minimum vertical drop of 0.2^{\prime} (two-tenths feet) shall always be provided across a junction structure, unless otherwise approved.

Under or within two feet (2^{\prime}) of streets or paved areas, the top of the pipe shall be located a minimum of twelve inches (12") below the pavement or curb subgrade, or greater if required to meet minimum cover and strength requirements for the type of pipe specified to withstand an AASHTO HS-20 loading. Outside of paved areas, the top of the pipe shall be located a minimum of twelve inches (12") below finished earth grade. Box culverts or other relatively wide and flat conveyance structures may be required to have additional cover if deemed necessary to support grass or other vegetative cover.

109.1.4 Clearance from Other Utilities

Horizontal Clearance:

Utility Minimum distance from outside edge of pipe to centerline

Storm sewer
Inside diameter of largest pipe*
Sanitary sewer
Five feet (5')
Water, gas, electric
line, or other utility
Five feet (5')

* or greater, if needed to allow proper placement and alignment of flared end sections

Vertical Clearance:

A minimum clear distance of twelve inches (12") from any other utility line shall be maintained above or below the storm drain pipe, unless otherwise approved.

109.1.5 Allowable Sizes

The minimum allowable inside diameter for any storm drain pipe on or connecting to storm drain piping in public right-of-way is fifteen inches (15"). The maximum allowable diameter is six feet (6 '), unless otherwise approved.

109.1.6 Plan Requirements

Each storm drain line shown on the plan shall be numbered or lettered (Line 1, Storm1, Line A, etc.). Structures in each line shall be numbered or lettered in sequence beginning at the downstream end of the line. Stationing shall begin at the downstream end of the line and proceed upstream. Branch lines shall be numbered consecutively moving in an upstream direction. A continuous profile shall be drawn for each storm drain line.

109.2 CONSTRUCTION MATERIALS

109.2.1 Types of Pipe Allowed

Storm sewers may be constructed of any of the following materials:

Material
Reinforced concrete round pipe

Reinforced concrete
elliptical pipe

Reinforced concrete
pipe-arch
Precast concrete flared end sections

Corrugated, galvanized steel round pipe

Corrugated, galvanized steel pipe-arch

Galvanized steel flared end sections

Corrugated polyethylene CPP
pipe
Cast-in-place reinforced concrete box culverts

Precast concrete box culvert

FES

Symbol	Standard
RCP	ASTM C-76, Class III

RCEP ASTM C-507

RCPA ASTM C-478

ASTM C-76

ASTM A-760
CMP AASHTO M-36

CMPA AASHTO M-167

FES ASTM A-760

ASTM D-1248
ASTM 1248

MODOT Specification
ASTM-789

Cast-in-place concrete pipe, masonry, vitrified clay, or other pipe not shown above is not allowed unless specifically approved.

Detailed information on structural and hydraulic properties of the type of pipe referred to above can be found in the Concrete Pipe Design Manual (Reference 109.1), the Handbook of Streel Drainage \& Highway Construction Products (Reference 109.2) and manufacturer's information
for corrugated polyethylene pipe.
Corrugated polyethylene pipe (CPP) is not allowed within the public right-of-way or public drainage easements, unless approved in writing by the Stormwater Engineer.

109.2.2 Junction Structures

Precast Manholes

Precast concrete manholes shall conform to the requirements of ASTM-C478. Cast-in-place circular manholes are not permitted.

The following minimum manhole diameters shall be used:

Pipe Diameter	Minimum Inside Diameter of Manh
$15 "-24 "$	Four feet (4')
$27 "-42^{\prime \prime}$	Five feet (5')
$48^{\prime \prime}$	Six feet (6')
$54-66^{\prime \prime}$	Eight feet (8')
$>66^{\prime \prime}$	Special junction structure

A minimum clearance of two feet (2^{\prime}) measured at the inside face of the manhole must be maintained between the outside edge of storm sewer pipes.

Junction Boxes

Square or rectangular junction boxes may be constructed of cast-in-place or precast concrete. Cast-in-place junction boxes shall be constructed as shown in Figure 109.2.

Minimum horizontal dimensions for junction boxes are as follows:
Pipe Diameter Minimum Inside Width of Junction Box

$15^{\prime \prime}-30^{\prime \prime}$	Four feet (4')
$36^{\prime \prime}-42^{\prime \prime}$	Five feet $\left(5^{\prime}\right)$
$48^{\prime \prime}$	Five feet six inches $\left(5^{\prime} 6^{\prime \prime}\right)$
$54^{\prime \prime}$	Six feet (6')
$60^{\prime \prime}$	Six feet six inches $\left(6^{\prime} 6^{\prime \prime}\right)$
$66^{\prime \prime}$	Seven feet $\left(7^{\prime}\right)$
$72^{\prime \prime}$	Seven feet six inches $\left(7^{\prime \prime} 6^{\prime \prime}\right)$
$>72^{\prime \prime}$	Special approval required

Junction boxes shall not exceed eight feet (8^{\prime}) in depth measured from the interior invert of the junction box to the top of the junction box rim, unless structural calculations are submitted and
approved.
Precast junction structures shall have a maximum inside horizontal dimension of eight feet (8^{\prime}) and a maximum depth of eight feet (8^{\prime}), unless structural calculations are submitted and approved. Precast junction boxes shall be as manufactured by Rose-Con Pipe, Springfield, Missouri, or approval equal.

109.3 HYDRAULIC DESIGN

109.3.1 Design Storm

Storm sewers shall be designed to convey the peak flow rate resulting from the required design storm having a rainfall intensity corresponding to the time of concentration at the point of interest, or a duration which produces the maximum runoff rate at the point of interest, depending upon the method used for computing runoff. It is preferred that storm sewers draining less than two hundred (200) acres be designed for runoff rates computed by the Rational Method.

Major (Emergency) System

Total drainage area less than one (1) square mile: 25 -year ($4 \% \mathrm{AEP}$) storm
Total drainage area one (1) square mile or more: 100-year (1\% AEP) storm
In cases where no overland relief area is provided for the difference between the 25 - and 100 -year storm, storm sewers shall be designed to convey the 100 -year storm.

Minor (Convenience) System

Storm sewers shall be designed to convey only intercepted flow necessary to maintain allowable street flooding depths, set forth in Figure 108.1.

Reductions in peak flow rates to account for the effects of stormwater detention facilities located upstream will be allowed only in instances where the detention basin has been incorporated into an approved hydrologic model of the tributary watershed.

109.3.2 Storm Sewer Capacity

Storm sewers shall be designed to convey the peak flow rate from the design storm set forth in Section 109.3.1 while maintaining allowable maximum and minimum velocities, and without surcharging which would adversely effect the performance of inlets or other components or the drainage system, or cause flooding of structures or streets.

Allowable Hydraulic Grades

Maximum hydraulic grade elevation for the design discharge shall be six inches (6") below the
lowest level of any inlet opening or twelve inches (12") below the rim of a junction box or manhole.

Pipe Capacity

Pipe capacity and velocity shall be computed using Manning's Equation:

$$
\begin{aligned}
& Q=\frac{1.49}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}} \\
& \mathrm{Q}=\text { rate of flow, cubic feet per second } \\
& \mathrm{n}=\text { Manning's roughness coefficient, see below } \\
& \mathrm{A}=\text { cross sectional area of flow, square feet } \\
& \mathrm{P}=\text { wetted perimeter, feet } \\
& \mathrm{R}=\text { hydraulic radius }=\mathrm{A} / \mathrm{P}, \text { feet } \\
& \mathrm{S}=\text { slope }
\end{aligned}
$$

Type of Pipe Manning's Roughness Coefficient

Reinforced concrete
(all shapes, cast in place \& precast)
Corrugated metal (annular corrugations)
Corrugated metal (helical corrugations)
0.013
0.024
0.011-0.024
(Use values recommended in Table
3.9 of the Handbook of Street

Drainage and Highway Construction
Products (Reference 109.2)

Corrugated polyethylene
0.013
(smooth wall)
The expression (1.49/n) A $\mathrm{R}^{\wedge}(2 / 3)$ is termed the conveyance of the pipe section. Full flow values for area, hydraulic radius and conveyance for circular pipe is shown in Figure 109.3 (Reference 109.1). Properties for reinforced concrete elliptical pipe and reinforced concrete pipe-arch are shown in Figure 109.4 (Reference 109.1). Properties for corrugated metal pipe-arch are shown in Figure 109.5 (Reference 109.2).

Energy Grade Line (EGL)

The energy grade line is computed using the principle of conservation of energy and the energy equation for open channel or pressure flow, and is written as follows:

Open Channel Flow

$$
z_{1}+d_{1}+\frac{V_{1}^{2}}{2 g}=z_{2}+d_{2}+\frac{V_{2}^{2}}{2 g}+H_{z}
$$

Pressure Flow

$$
Z_{1}+\frac{p_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}=Z_{2}+\frac{p_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+H
$$

$\mathrm{z}=$ elevation (gravity) head, feet
$d=$ depth of flow, feet
$\mathrm{V}=$ velocity of flow $=\mathrm{Q} / \mathrm{A}$, feet $/$ second
$P / y=$ pressure head, feet
$y=$ unit fluid weight, pounds per cubic foot
$\mathrm{H}_{\mathrm{L}}=$ total head loss, feet $=h_{h}+\sum h_{m}$
$\mathrm{h}_{f} \quad=$ head loss due to friction, feet $=\mathrm{L} \mathrm{x} \mathrm{S}_{\mathrm{f}}$
$\mathrm{L}=$ pipe length, feet
$\mathrm{S}_{\mathrm{f}}=$ pipe friction slope from Manning's Equation, feet/foot, $S f=\left(\frac{Q}{C_{1}}\right)^{2}$
$C_{1}=$ conveyance $=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}$
(See Figure 109.3)
$\mathrm{h}_{\mathrm{m}}=$ minor head loss, at entrance, exit, bends, and junctions, feet (see below)

D = pipe diameter, or vertical dimension, feet
$\mathrm{Q}_{\mathrm{f}}=$ pipe capacity at full flow, cubic feet per second
$\mathrm{V}_{\mathrm{f}}=$ velocity at full flow, feet/second
$\mathrm{V}=$ velocity, feet/second

Hydraulic Grade Line (HGL)

Hydraulic grades are computed by subtracting the velocity head, $\left(V^{2} / 2 g\right)$, from the energy head. When the velocity is zero, the hydraulic grade line is coincident with the energy grade line.

Minor Head Losses

Minor head losses are computed as follows:

Pipe Entrance

$$
h=K \frac{V^{2}}{2 g}
$$

Contraction coefficient, $\mathrm{K}_{\mathrm{c}}=0.5$ (Reference 109.3) (for square edge conditions)

$$
h_{e}=K \frac{V^{2}}{2 g} \text {, Expansion coefficient, } \mathrm{K}_{\mathrm{e}}=1.0
$$

Junction and Manhole Losses

$$
h=\frac{V_{2}^{2}}{2 g}-K \frac{V_{1}^{2}}{2 g}
$$

Junction loss coefficient, K_{j}, for use in the foregoing equation is as defined in Figure 109.6 (Reference 109.4). Other methods of computing junction and manhole losses are acceptable, provided they are documented in generally accepted literature.

Bends

$$
\begin{array}{lc}
h_{b}=K & \frac{V^{2}}{2 g}, \text { Bend coefficient, } \mathrm{K}_{\mathrm{b}} \text { as follows (Reference 109.2): } \\
\begin{array}{lc}
\text { Deflection at Bend } & \text { Head Loss Coefficient, } \mathrm{K}_{\mathrm{b}} \\
90 \text { degrees } & 0.50 \\
60 \text { degrees } & 0.43 \\
45 \text { degrees } & 0.35 \\
22.5 \text { degrees } & 0.20
\end{array}
\end{array}
$$

109.4 OUTLET REQUIREMENTS

Storm sewer outlets shall be designed to allow expansion of flow and reduction of velocity, without undue risk of erosion downstream, and allowing for proper construction and maintenance of cut or embankment slopes at the outlet.

A headwall or flared end section shall be provided at all pipe outlets. Flared end sections and headwalls shall have a toewall extending a minimum of eighteen inches (18") below grade at their downstream end to prevent undercutting.

An erosion resistant lining of concrete or grouted riprap shall be provided for a distance equal to five (5) times the diameter of the outlet pipe or the box culvert width, downstream of the headwall apron or flared end section. The width of the grouted riprap shall be a minimum of two (2) times the pipe diameter or box culvert width or five feet (5'), whichever is less. Where velocity exceeds fifteen feet (15') per second at the pipe outlet an energy dissipator may be required. Energy dissipators shall be designed as set forth in the ASCE design manual (Reference 109.4).

109.5 REFERENCES

1. American Concrete Pipe Association, Concrete Pipe Design Manual.
2. American Iron and Steel Institute, Handbook of Steel Drainage \& Highway Products, 5th Edition (1994).
3. Hydraulic Design of Highway Culverts (1985) Federal Highway Administration, Hydraulic Design Series No. 5, Report No. FHWA-IP-85-15, Washington, D.C.
4. American Society of Civil Engineers Manuals and Reports of Engineering Practice No. 77
(WEF Manual of Practice FD-20), Design and Construction of Urban Stormwater Management Systems, Chapters 6 and 8. American Society of Civil Engineers, New York, NY, 1992.
m:\data|wp51|storm2|swregs|section 109.wpd

RAM-NEK OR EQUAL TO BE USED AS SEALER-

SECTION AA

1. DIAGONAL bars in top slab placed near bottom of slab.
2. REINFORCING BARS SHALL BE CUT OR BENT AT PIPE OPENINGS.
3. ALL PIPES SHALL FIT FLUSH WTH INSIDE FACE OF BOX.
4. MAXIMUM PIPE SIZE FOR BOX IS 42". FOR LARGER PIPES INCREASE INSIDE BOX DIMENSIONS TO THE INSIDE PIPE DIAMETER PLUS $6^{\prime \prime}$. USE GIVEN BAR SPACING FOR LARGER BOXES. MAXIMUM ALLOWABLE BOX SIZE IS $72^{\prime \prime}$.
5. BOTTOM OF BOX TO BE FILLED WTH CONCRETE TO MID-DEPTH OF PIPE FORMING CHANNELS TOWARD OUTLET PIPE FROM ALL INLET PIPES.
6. ALL CONCRETE SHALL HAVE 28 DAY COMPRESSIVE STRENGTH OF 3000 PSI
7. ALL REINFORCING BARS TO BE DEFORMED BARS AND MEET REQUIREMENTS OF ASTM A-615 MIN. GRADE 40.
8. $4^{" ~ B E D D I N G ~ M A T E R I A L ~ T O ~ B E ~ U S E D ~ U N D E R ~ B O X . ~}$
9. IF BOX IS GREATER THAN 9', MUST BE SPECIAL DESIGN.

FULL FLOW DATA FOR CIRCULAR PIPE

D Pipe Diameter (inches)	$\begin{gathered} \text { A } \\ \text { Area } \\ \text { (Square feet) } \end{gathered}$	R Hydraulic Radius (feet)	Value of $\mathrm{C}_{1}=\frac{1.486}{n} \times \mathrm{A} \mathrm{x} \mathrm{R}^{2 / 3}$	
			$\mathrm{n}=0.013$	$\mathrm{n}=0.024$
4	0.0873	0.083	1.9	---
6	0.196	0.125	5.6	---
8	0.349	0.167	12.1	---
10	0.545	0.208	21.8	---
12	0.785	0.250	35.7	26.3
15	1.227	0.312	64.7	35.0
18	1.767	0.375	105	56.9
21	2.405	0.437	158	85.6
24	3.142	0.500	226	122
27	3.976	0.562	310	167
30	4.909	0.625	410	222
36	7.069	0.750	666	360
42	9.621	0.875	1006	545
48	12.566	1.000	1436	778
54	15.904	1.125	1967	1065
60	19.635	1.250	2604	1414
66	23.758	1.375	3357	1818
72	28.274	1.500	4234	2293
84	38.485	1.750	6388	3460
96	50.266	2.000	9119	4439

greene County mishouri - STORM Water design Standards

FROM: American Concrete Pipe Association, 1985 "Concrete Pipe Design Manual"

TABLE 4
FULL FLOW COEFFICIENT VALUES ELLIPTICAL CONCRETE PIPE

Pipe Size $R \times S(H E)$ SXR(VE) (Inches)	Approximate Equivalent Circular Diameter (Inches)	A Area. (Square Feet)	R Hydraulic Radius (Feet)	Value of $C_{1}=\frac{1.486}{n} \times A \times R^{2 / 3}$			
				$n=0.010$	$n=0.011$	$n=0.012$	$n=0.013$
14×23	18	1.8	0.367	138	125	116	108
19×30	24	3.3	0.490	301	274	252	232
22×34	27.	4.1	0.546	405	368	339	313
24×38	-30	5.1	0.613	547	497	456	. 421
27×45	33	6.3	0.686	728	662	607	a -560
29×45	36	7.4	0.736	891	810	746	
32×49	39	8.8	0.812	1140	1036	948	875
34×53	42	10.2	0.875	1386	1260	1156	1067
38×60	48	12.9	0.969	1878	1707	1565	1445
43×68	54	16.6	1.106	2635	2395	2196	2027
48×76 53×83	60	20.5	1.229	3491	3174	2910	- 2686
53×83	66	24.8	1.352	4503	4094	3753	- 3464
58×91	72	29.5	1.475	5680	5164	4734	4370
63×98 68×106	78	34.6	1.598	7027	6388	5856	5406
68×106	84	40.1	1.721	8560	7790	7140	6590
72×113	90	46.1	1.845	10300	9365	8584	7925
77×121	96	52.4	1.967	12220	11110	10190	9403
82×128	102	59.2	2.091	14380	13070	11980	11060
87×136	108	. 66.4	2.215	16770	15240	13970	12900
92×143	114	74.0	2.340	19380	17620	16150	14910
97×151 106×165	120	82.0	2.461	22190	20180	18490	17070
106×166	132	99.2	2.707	28630	26020	23860	22020
116×180	144	118.6	2.968	36400	33100	30340	28000

TABLE 5
FULL FLOW COEFFICIENT VALUES
CONCRETE ARCH PIPE

$\begin{gathered} \text { Pipe Size } \\ \text { R×S } \\ \text { (Inches) } \end{gathered}$	Approximate Equivalent Circular Diameter (Inches)	A Area (Square Feet)	R Hydraulic Radius (Feet)	Value of $C_{1}-\frac{1.486}{n} \times A \times R^{2}$			
				ก 0.010	$n=0.011$	$n=0.012$	$n=0.013$
11×18	15	1.1	0.25	65	59	54	50
$131 / 2 \times 22$	18	1.6	0.30	110	100	91	84
$151 / 2 \times 26$	21	2.2	0.36	165	150	137	127
$18 \times 281 / 2$	24	2.8	0.45	243	221	203	187
$221 / 2 \times 361 / 4$	30	4.4	0.56	441	401	368	339
$265 / 8 \times 431 / 4$	36	6.4	0.68	736	669	613	566
$315 / 10 \times 511 / 8$	42	8.8	0.80	1125	1023	938	866
$36 \times 581 / 2$	48	11.4	0.90	1579	1435	1315	1214
$\begin{array}{r}40 \\ \hline 45 \\ \hline\end{array}$	54	14.3	1.01	2140	1945	1783	1646
45×73	60	17.7	1.13	2851	2592	2376	2193
54×88	72	25.6	1.35	4641	4219	3867	3569
62×102	84	34.6	1.57	6941	6310	5784	5339
72×115	90	44.5	1.77	9668	8789	8056	7436
771/4 $\times 122$	96	51.7	1.92	11850	10770	9872	9112
$871 / 8 \times 138$	108	66.0	2.17	16430	14940	13690	12640
$967 / 8 \times 154$	120	81.8	2.42	21975	19977	18312	16904
$1061 / 2 \times 1683 / 4$	132	99.1	2.65	28292	25720	23577	21763

GREENE COUNTY MISSOURI - STORM WATER DESIGN STANDARDS

FULL FLOW DATA FOR
ELLIPTICAL CONCRETE PIPE AND CONCRETE ARCH PIPE

FROM: American Iron and Steel Institute, 1994
"Handbook of Steel Drainage \& Highway Construction Products"

'Table 2.18 Sizes and Layout Details-CSP Pipe Arch. $23 / 3 \times 1 / 2 \mathrm{in}$. Corrugation

Equiv. Diameter. in.	Span in.	Rise. in.	Waterway Area. ft^{2}	Layout Dimensions			
				$\begin{gathered} \text { B } \\ \text { in. } \end{gathered}$	$\begin{aligned} & R_{\mathrm{c}} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & R_{1} \\ & \text { in } \end{aligned}$	$\begin{aligned} & R_{\mathrm{b}} \\ & \text { in. } \end{aligned}$
15	17	13	1.1	41/8	$31 / 2$	8\%/	255/
18	21	15	1.6	47/8	41/8	$10^{3 / 4}$	331/8
21	24	18	2.2	5\%/	47/8	117/8	345/
24	28	20	2.9	61/2	$51 / 2$	14	421/4
30	35	24	4.5	$81 / 8$	67\%	177/8	$551 / 8$
36	42	29	6.5	$931 / 4$	81/4	$211 / 2$	661/8
42	49	33	8.9	11\%	9 $1 / 8$	251/0	$771 / 4$
48	57	38	11.6	13	11	285/8	881/4
54	64	43	14.7	145/8	121/8	$321 / 4$	991/4
60	71	47	18.1	161/4	131/4	351/4	1101/4
66	77	52	21.9	17\%	151/8	391/8	121/4/4
72	83	57	26.0	191/2	161/2	43	1321/4

\qquad
*Table 2.19 Sizes and Layout Details-CSP Pipe-Arch 3×1 or $5 \times 1 \mathrm{in}$. Corrugation

Equiv. Diameter, in.	Nominal Size. in.	Design		Waterway Area. t^{2}	Layout Dimensions			
		Span, in.	Rise. in.		$\begin{array}{r} \mathrm{B} \\ \text { in. } \end{array}$	$\begin{aligned} & R_{c} \\ & \text { in. } \end{aligned}$	$\begin{gathered} R_{1} \\ \text { in } \end{gathered}$	$\begin{aligned} & R_{0} \\ & \text { in. } \end{aligned}$
48	53×41	53	41	11.7	151/4	103/16	281/16	731/6
54	60×46	$581 / 2$	$481 / 2$	15.6	201/2	183/4	293/8	$51 / 18$
60	66×51	65	54	19.3	223/4	203/4	325/8	561/4
66	73×55	721/2	581/4	23.2	251/8	227/8	363/4	633/4
72	81×59	79	621/2	27.4	233/4	20\%/	$391 / 2$	$825 / 8$
78	87×63	$861 / 2$	671/4	32.1	253/4	225/8	433/8	921/4
84	95×67	$931 / 2$	713/4	37.0	273/4	243/8	47	1001/4
90	103×71	1011/2	76	42.4	293/4	261/8	$511 / 4$	1115/8
96	112×75	1081/2	$801 / 2$	48.0	315/3	273/4	54\%	1201/4
102	117×79	1161/2	843/4	54.2	335/8	291/2	593/6	$1313 / 4$
108	128×83	1231/2	891/4	60.5	35\%/8	$311 / 4$	631/4	1393/4
114	137×87	131	931/4	67.4	379/6	33	673/8	1491/2
120	142×91	1381/2	98	74.5	391/2	$341 / 4$	715/8	1623/8
126	150×96	146	102	81	41	36	76	172
132	157×101	153	107	89	43	38	80	180
138	164×105	159	113	98	45	40	82	184
144	171×110	165	1181/2	107	47	41	85	190

GREENE COUNTY MISSOURI - STORM WATER DESIGN STANDARDS
FIGURE 109.5
DATA FOR CORRUGATED METAL PIPE-ARCH
FLE: f10905.dwg
DATE: 04/05/99

FROM: American Society of Civil Engineers ASCE Manuals and Reports of Engineering Practice No. 77 "Design and Construction of Urban Stormwater Management Systems"

(b)

Case I

Case III
(a)

a)

Case IV

Figure 6.14-Minor head losses due to turbulence at structures: case Iinlet on main line (a) plan and (b) section, case II-inlet on main line with branch lateral (a) plan and (b) section, case III-manhole on main line with 45 -deg branch lateral (a) plan and (b) section, and case IV - manhole on main line with 90deg branch lateral (a) plan and (b) section (City of Austin, 1987).

GREENE COUNTY MISSOURI - STORM WATER DESIGN STANDARDS

